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Assemblies of slender structures forming brushes are common in daily life from sweepers
to pastry brushes and paintbrushes. These types of porous objects can easily trap liquid
in their interstices when removed from a liquid bath. This property is exploited to
transport liquids in many applications, ranging from painting, dip-coating and brush-
coating to the capture of nectar by bees, bats and honeyeaters. Rationalising the viscous
entrainment flow beyond simple scaling laws is complex due to the multiscale structure
and the multidirectional flow. Here, we provide an analytical model, together with
precision experiments with ideal rigid brushes, to fully characterise the flow through
this anisotropic porous medium as it is withdrawn from a liquid bath. We show that the
amount of liquid entrained by a brush varies non-monotonically during the withdrawal
at low speed, is highly sensitive to the different parameters at play and is very well
described by the model without any fitting parameter. Finally, an optimal brush geometry
maximising the amount of liquid captured at a given retraction speed is derived from the
model and experimentally validated. These optimal designs open routes towards efficient
liquid-manipulating devices.

Key words: porous media

1. Introduction
There are many strategies to transport fluids at scales of the order of the capillary length.
Passive transport, driven by surface tension, has proven to be an effective means to
promote directional liquid transport provided that the surface is adequately structured
(e.g. Courbin et al. 2007; Chen et al. 2016; Feng et al. 2021), with practical applications in
microfluidics (e.g. Stone, Stroock & Ajdari 2004; Seemann et al. 2012) or water harvesting
(e.g. Zheng et al. 2010; Park et al. 2016). Capillary rise within the interstices of an assembly
of structures, when the system is rigid (Princen 1969; Charpentier, Brändle de Motta &
Ménard 2020) or deformable by capillary forces (e.g. Bico et al. 2004; Kim & Mahadevan
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2006; Py et al. 2007; Duprat, Aristoff & Stone 2011), is another method to control the
transport of liquid. According to the geometry of the system and the viscosity of the
liquid, the capillary rise can be relatively small or slow. Active transport is then a way to
capture a larger amount of fluid more quickly and can involve a range of mechanisms, from
applied pressure difference to ‘suck’ a liquid (Wei et al. 2023) to viscous entrainment. An
archetypal example of the latter is dip-coating where an immersed object is pulled out of
a liquid bath. The importance of this process in many industrial applications is illustrated
by the vast literature which, since the seminal work of Landau, Levich and Derjaguin
(Landau & Levich 1942; Derjaguin 1943), explored many instances of dip-coating (e.g.
Quéré 1999; Weinstein & Ruschak 2004; Tang & Yan 2017; Bertin et al. 2022). In
particular, textured flat surfaces and rods were shown to enhance the collection of liquid by
viscous entrainment in one-dimensional settings where the flow is mainly unidirectional
(Seiwert, Clanet & Quéré 2011; Nasto, Brun & Hosoi 2018; Lechantre, Michez & Damman
2019; Cheng et al. 2023). In the case of flexible hair bundles, the retraction speed increases
the capillary attraction force between neighbouring hairs (Bense, Siéfert & Brau 2023)
and affects the morphology of the bundle itself due to the interplay between capillary and
viscous forces (Ha et al. 2020; Moon & Ha 2024) but the impact of flexibility on the liquid
transport remains to be elucidated.

Dipping brush-like structures is also a strategy adopted by some nectarivores to feed
on nectar (e.g. Kim, Gilet & Bush 2011; Inouye 2013). Indeed, collecting a viscous fluid
at small scales prevents the use of methods employed by other animals (Kim & Bush
2012), like using gravity (humans) or fluid inertia to overcome gravity (lapping for cats
(Reis et al. 2010), ladling for dogs (Crompton & Musinsky 2011; Gart et al. 2015)). To
deal with capillary and viscous forces dominating at small scales, many nectarivores have
developed highly specialised mouthparts adapted to their feeding method (Krenn, Plant &
Szucsich 2005; Krenn 2019): hollow tubular proboscis/tongue for suction (butterfly (Krenn
2010), sunbird (Paton & Collins 1989; Cuban et al. 2024)) or tongue decorated by
numerous outgrowths resembling a brush for dipping (bees (Lechantre et al. 2021; Wei
et al. 2023), honeyeaters (Mitchell & Paton 1990; Hewes et al. 2023), bats (Harper, Swartz
& Brainerd 2013)). In the latter case, the tongue is dipped cyclically into the nectar
which is collected by viscous entrainment when the tongue is withdrawn from the liquid
(figure 1a).

Dipping a brush appears thus as a simple and commonly used method for capturing
liquids in many contexts, yet the details of the flows occurring in the system, which
determine the amount of liquid that can be captured by such a device, remain unclear.
Indeed, so far, the rationalisation of viscous entrainment in brush-like structures is limited
to scaling laws or unidirectional flows. A comprehensive modelling of the flow in these
systems is therefore a necessary step to fully exploit them and to better understand, for
example, the physics of dipping among nectarivores.

Here, we use rigid brush structures to study the capture of liquid by viscous entrainment
and analyse the non-trivial motion of the air-liquid interface within the brush during
its retraction from a liquid bath (figure 1b,c). Drawing an analogy between brushes and
porous media, we derive an analytical model to characterise the three-dimensional flow
within a brush during its withdrawal. This model accurately describes the evolution of
the interface during an experiment and hence the amount of liquid entrained at any time.
Finally, building on our model, we find an optimal brush geometry maximising the volume
of liquid collected at the end of retraction, which is experimentally validated. Our model
sheds light on the hydrodynamics of brush-like structures and provides a new tool to design
optimal structures for fluid transport.
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Figure 1. (a) Snapshots of a honeyeater (Acanthagenys rufogularis) feeding on sugar solution (scale bar: 5 mm;
�t = 10 ms). Credit: A.E. Hewes and A. Rico-Guevara. (b) Schematic of a brush composed of an equilateral
triangular array of pillars showing its lateral size D, the distance d between the centres of neighbouring pillars
and their radius R. (c) Snapshots of an experiment where a brush (R = 300 µm, d = 1.5 mm) initially immersed
at a depth L0 = 16 mm is withdrawn from a bath of silicone oil (μ = 0.97 Pa s) at a retraction speed V = 30
mm min−1 (�t = 6.4 s). The height h of the interface is initially equal to the Jurin height hJ and varies during
the retraction. This evolution is monitored by measuring the temporal evolution of interface height at the centre
of the brush, h0(t) = h(0, t). (d) Evolution of h0 − hJ as a function of time, rescaled by the time needed
to displace the brush by a distance L0 = 11 mm, for two brushes (R = 500 µm, d = 2.0 mm (φ1 = 0.773)
and R = 500 µm, d = 2.5 mm (φ2 = 0.855)) withdrawn at various speeds V as indicated in mm min−1. The
maximum height hm0 reached by the interface during the retraction process is indicated with cross symbols.
The dashed curve indicates a motion at the speed of the brush. (e) Same as (d) for various immersion depths
L0 as indicated in mm and V = 32 mm min−1 except for the data represented by a star symbol where V =
100 mm min−1 and R = 400 µm, d = 2.0 mm (φ2 = 0.855). ( f ) Evolution of hm0 − hJ as a function of
retraction speed for 13 different brushes where 4 � V � 2000 mm min−1, 2 � L0 � 16 mm, 15 � D � 21.2
mm and μ = 0.97 Pa s. The number of pillars varies between 60 and 163 and R and d are given in µm and
mm, respectively. The symbols with a black edge indicate the data for which hm0 is reached at the end of the
retraction when V t/L0 = 1.

2. Experiments and qualitative discussions
We study the collection of liquid by viscous entrainment at small Reynolds number
using three-dimensional-printed brushes with a mean diameter D and composed of an
equilateral triangular array of pillars of radius R separated by a distance d (figure 1b).
The brushes are fixed to a traction device and immersed at a depth L0 in silicone oil of
viscosity μ, surface tension γ and density ρ (see Appendix A for more details). Upon
immersion, the liquid first rises by capillarity up to the Jurin height given by (Princen
1969; Charpentier et al. 2020)

hJ = 2�2
c R

−1(1 − φ)φ−1 cos θY , (2.1)

where φ = 1 − 2πR2/(
√

3d2) is the porosity, �c = [γ /ρg]1/2 the capillary length and θY
the Young contact angle (see Appendix B). After reaching equilibrium state, the brush
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is removed at a constant speed V from the bath and the spatio-temporal evolution of the
height of the air–liquid interface inside the brush, z = h(r, t), is recorded from the side
with a camera (figure 1c). We simultaneously measured the force required to remove the
brush from the bath, so that at the end of the retraction this force corresponds to the weight
of the dry brush plus that of the captured liquid mliq .

Figure 1(d) shows some typical temporal evolution of the interface height measured
at the centre of the brush, h0(t) = h(0, t), when the retraction speed V is varied while
keeping the immersion depth L0 constant (see supplementary movies S1 and S2 available
at https://doi.org/10.1017/jfm.2025.10300). The interface first moves up at the same speed
as the pillars (dashed curve in figure 1d), before slowing down to reach a maximum value
hm0 where it stops and starts moving down. The higher the retraction speed V , the more
liquid is entrained and the more hm0 drifts towards the end of the experiments (i.e. V t/L0 =
1). Consequently, for a given brush, hm0 is reached at the end of the retraction when V is
large enough and the temporal evolution of h0 is then monotonic as seen in figure 1(e)
for the data represented by green star symbols. Similarly, increasing L0 while keeping V
constant yields larger values of hm0 (figure 1e) until it saturates at large enough L0 (see
supplementary movie S3 and Appendix D.3).

Figure 1( f ) gathers results of all our experiments and shows the evolution of the
maximal height hm0 as a function of the retraction speed for various brushes and immersion
depth values. Apart from the global increase of hm0 with the retraction speed, there is
no clear trend as shown by the variation of hm0 with L0 at a given retraction speed.
Figure 1( f ) shows also the data for which hm0 is reached at the end of the retraction when
t = texp = L0/V (see symbols with a black edge). Clearly, a transition speed beyond which
hm0 is reached at texp cannot be easily determined from these raw data. For example, at
V = 10 mm min−1, hm0 is reached before the end of the retraction or at the end of the
retraction according to the brush used. Therefore, the transition speed depends on the
brush porosity. Similarly, at V = 30 mm min−1 and a given brush with R = 300 µm and
d = 1.5 mm, hm0 is reached at texp when L0 = 2 mm whereas hm0 is reached at t < texp when
L0 = 16 mm. Consequently, the interplay between the retraction speed, the immersion
depth and the porosity of the brush yields intricate results that require a theoretical model
to be rationalised. Before deriving the model, we first discuss the dimensionless groups of
parameters that should govern the dynamics.

The fluid capture dynamics by a porous brush results from a competition occurring
during the retraction between gravity, draining the fluid out of the brush, and viscous
forces opposing to this drainage. The typical draining time is given by Darcy’s law (Guyon
et al. 2015) and is written as tD = L0/V‖, where V‖ = k‖ρg/μ is the speed at which a
liquid of viscosity μ flows vertically inside a porous medium of permeability k‖ due to
the gravitational acceleration g. This time has to be compared with the duration of the
retraction texp = L0/V , yielding a first dimensionless parameter V = tD/texp = V/V‖.
When V → 0 the fluid has time to flow out of the brush and there is no liquid capture.
Conversely, when V → ∞ the fluid located inside the brush at t = 0 does not have time to
flow out and moves up with the pillars at speed V .

A second dimensionless parameter is identified by noting that, during the retraction, part
of the fluid initially inside the brush escapes by flowing longitudinally through the bottom
of the brush and transversely through the sides. According to Darcy’s law, the flow rate in
each direction is given by Qi ∼ ki Ai�pi/(μ�i ) where ki is the permeability of the brush
in the considered direction, Ai the cross-sectional area of the flow (A‖ ∼ D2, A⊥ ∼ DL0)
and �pi the pressure difference that drives the flow over the length �i (�‖ ∼ L0, �⊥ ∼ D).
Therefore, Q⊥/Q‖ ∼ δ̄2�p⊥/�p‖, where δ̄ = (k⊥/k‖)1/2(2L0/D) is the dimensionless

1014 A29-4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
7.

18
5.

18
7.

13
3,

 o
n 

07
 Ju

l 2
02

5 
at

 1
5:

46
:2

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
30

0

https://doi.org/10.1017/jfm.2025.10300
https://doi.org/10.1017/jfm.2025.10300
https://doi.org/10.1017/jfm.2025.10300
https://doi.org/10.1017/jfm.2025.10300
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10300


Journal of Fluid Mechanics

parameter that compares the radial to vertical flow rate for a given pressure difference. If
δ̄ → 0, the flow occurs in the longitudinal direction and if δ̄ → ∞, the fluid escapes only
through the sides.

However, this argument does not hold above the bath level where the fluid cannot escape
the brush transversely because of the presence of the air–liquid interface. The flow is
thus essentially longitudinal in this region. The amount of fluid initially above and below
the bath level scales as φD2hJ and φD2L0, respectively. The ratio between these two
quantities, h̄ J = hJ/L0, is another measure of the importance of the transverse flow in the
system. When h̄ J � 1, the liquid initially inside the brush is mostly above the bath level,
hence the flow is primarily longitudinal (even for large δ̄).

In the following, we perform a formal analysis of the flow occurring inside
a brush withdrawn at constant speed from a bath and obtain a nonlinear partial
differential equation (PDE) for the spatio-temporal evolution of h(r, t) involving the three
dimensionless parameters V , δ̄ and h̄ J identified above. The predictions of this model
show quantitative agreement with experimental results obtained with three-dimensional-
printed brushes as those reported in figure 1(d,e). Finally, we exploit the understanding
obtained from this theoretical analysis to identify optimal brushes that maximise the fluid
intake.

The formalism developed here is easily adapted to any porous media in which
the drainage flow occurs both vertically and horizontally provided the appropriate
permeability k‖ and k⊥ are known. This broad applicability is demonstrated by the
quantitative agreement between our model and the data obtained with two parallel plates
separated by a small gap and withdrawn from a bath (see § 6).

3. Theoretical model

3.1. Pressure, velocity and equation for the interface
The velocity field in a brush is given by Darcy’s law in cylindrical coordinates whose
origin is placed in the middle of the brush at the bath level (figure 1c):

vr (r, z) = −k⊥(z)

μ

∂p

∂r
, vz(r, z) = V − k‖

μ

(
∂p

∂z
+ ρg

)
, (3.1)

where V is the retraction speed, k‖ the longitudinal permeability along the z axis and
k⊥(z) = k⊥θ(−z) an effective transverse permeability along the r axis, where θ(z) is the
Heaviside function, allowing a horizontal flow in the immersed part of the brush only.
Indeed, the fluid transported by the brush located above the level of the bath is surrounded
by an air–liquid interface. As seen in figures 1(c) and 4 and in supplementary movies
S1–S4, this interface does not noticeably expand radially during the retraction of the brush.
The radial velocity must thus be small compared with the longitudinal one in this region.
The expressions of k‖ and k⊥ are given in figure 2(a) (see Appendix C for more details).
Mass conservation, ∇ · v = 0, gives an equation for the pressure:

∂2 p

∂z2 + k⊥(z)

k‖
∇2
r p= 0, (3.2)

where ∇2
r p= r−1∂r (r∂r p) is the radial part of the Laplacian in cylindrical coordinates.

Once the pressure field is known, (3.1) yields the velocity field which, evaluated at air–
liquid interface z = h(r, t), gives the spatio-temporal evolution of the interface from the

1014 A29-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
7.

18
5.

18
7.

13
3,

 o
n 

07
 Ju

l 2
02

5 
at

 1
5:

46
:2

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
30

0

https://doi.org/10.1017/jfm.2025.10300
https://doi.org/10.1017/jfm.2025.10300
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10300


B. Radisson, H. Bense, L. Domino, H.-A.B. Hua, E. Siéfert and F. Brau

condition
∂h(r, t)

∂t
= vz(r, h) − vr (r, h)

∂h(r, t)

∂r
= vz(r, h), (3.3)

where we used vr (r, h) = 0 since we assume that there is no radial flow above the bath,
i.e. k⊥(h > 0) = 0.

Introducing the following rescaled quantities:

r̄ = 2r/D, (z̄, h̄, L̄, h̄ J , t̄, p̄) = (z, h, L , hJ , V t, p/ρg)/L0, (3.4)

equation (3.2) becomes

∂2 p̄

∂ z̄2 + δ2 k⊥(z̄)

k‖
∇2
r̄ p̄= 0, δ = 2L0

D
. (3.5)

Equation (3.5) is solved perturbatively by assuming that the system aspect ratio δ is small.
In this case, the pressure can be expanded as a power series in δ:

p̄(r̄ , z̄) = p̄0(r̄ , z̄) + δ2 p̄1(r̄ , z̄) + · · · . (3.6)

Substituting (3.6) into (3.5), we obtain at order δ0 and δ2

∂2 p̄0

∂ z̄2 = 0,
∂2 p̄1

∂ z̄2 = −k⊥(z̄)

k‖
∇2
r̄ p̄0. (3.7)

To solve (3.7), we assume that the pressure is hydrostatic below the immersed part of
the brush, p(r, −L) = ρgL , and equal to the capillary pressure at the air–liquid interface,
p(r, h) = −ρghJ . Here, L = L0 − V t is the immersed length that decreases linearly in
time as the brush is removed vertically from the bath at a constant speed V . Using
the rescaled variables (3.4) and the expansion (3.6), the boundary conditions for (3.7)
read as

p̄0(r̄ , −L̄) = L̄, p̄0(r̄ , h̄) = −h̄ J , p̄1(r̄ , −L̄) = p̄1(r̄ , h̄) = 0. (3.8)

Equations (3.7) together with (3.8) are easily solved. The solutions are

p̄0(r̄ , z̄) = (P(r̄) − 1) z̄ + L̄P(r̄), P = h̄(r̄) − h̄ J
h̄(r̄) + L̄

, (3.9a)

p̄1(r̄ , z̄) = k⊥
6k‖

[
−z̄2 (

z̄ + 3L̄
)
θ(−z) + 2L̄3(h̄(r̄) − z̄)

L̄ + h̄(r̄)

]
∇2
r̄ P(r̄). (3.9b)

Note that the solutions are obtained at a given arbitrary time and the time dependence of
the various functions is not indicated. Using the changes of variables (3.4), equation (3.1)
for the velocities and (3.3) for the spatio-temporal evolution of the interface become

vr (r̄ , z̄) = −δ
k⊥(z̄)

k‖
V‖

∂ p̄

∂ r̄
, vz(r̄ , z̄) = V − V‖

(
∂ p̄

∂ z̄
+ 1

)
, V‖ = k‖ρg

μ
, (3.10a)

∂ h̄(r̄ , t̄)

∂ t̄
= vz(r̄ , h̄)

V
. (3.10b)

Substituting (3.10a) into (3.10b), we get

∂ h̄

∂ t̄
= 1 − 1

V

(
∂ p̄

∂ z̄
+ 1

)
z̄=h̄

= 1 − 1

V

(
∂ p̄0

∂ z̄
+ δ2 ∂ p̄1

∂ z̄
+ 1

)
z̄=h̄

, V = V

V‖
, (3.11)
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where we used (3.6). From (3.9), we have

∂ p̄0

∂ z̄

∣∣∣∣
z̄=h̄

=P(r̄) − 1,
∂ p̄1

∂ z̄

∣∣∣∣
z̄=h̄

= − k⊥
3k‖

L̄3

L̄ + h̄(r̄)
∇2
r̄ P(r̄), (3.12)

so that (3.11) becomes

∂ h̄

∂ t̄
= 1 − P(r̄)

V
+ δ2

3V

k⊥
k‖

L̄3

L̄ + h̄(r̄)
∇2
r̄ P(r̄). (3.13)

It is convenient to measure the position of the air–liquid interface with respect to its
static initial position. Therefore, we have

H(r̄ , t̄) = h̄(r̄ , t̄) − h̄ J , P = H

H + h̄ J + L̄
, (3.14a)

∇2
r̄ P = ∂2P

∂ r̄2 + 1
r̄

∂P
∂ r̄

= (h̄ J + L̄)

(H + h̄ J + L̄)2
∇2
r̄ H − 2(h̄ J + L̄)

(H + h̄ J + L̄)3

[
∂H

∂ r̄

]2

. (3.14b)

Substituting (3.14) in (3.13), we finally get

∂H

∂ t̄
= 1 − 1

V

[
H

H + h̄ J + L̄

]
+ δ2

3V

k⊥
k‖

L̄3(h̄ J + L̄)

(H + h̄ J + L̄)3

[
∇2
r̄ H − 2(∂r̄ H)2

(H + h̄ J + L̄)

]
.

(3.15)

An alternative method to derive this equation is given in Appendix D.1. It appears that
the last term of (3.15) is very small. Indeed, the relative error on the maximum value of
H(0, t) introduced by neglecting this term is at most 3.5 % when 0 � δ̄ � 2, 0 � V � 5
and 0.1 � h̄ J � 0.5 (see Appendix D.2). Neglecting this term leads to the equation for the
interface we use in the following:

∂H

∂ t̄
= 1 − H

V (H + h̄ J + L̄)
+ δ̄2

3V

L̄3(L̄ + h̄ J )

(H + h̄ J + L̄)3
∇2
r̄ H, (3.16a)

H = h − hJ
L0

, V = V

V‖
, δ̄2 = δ2k⊥

k‖
, V‖ = k‖ρg

μ
, L̄ = 1 − t̄, (3.16b)

where H is the dimensionless height of the interface with respect to its initial (static)
position, L̄ = L/L0 is the relative variation of the immersion depth during the retraction
and H + h̄ J + L̄ = (h + L)/L0 is the dimensionless wet length of the brush.

As expected, (3.16a) involves the three dimensionless parameters V , δ and h j identified
in § 2. For V → ∞ only the first term in (3.16a) remains and H(t) = t (i.e. the fluid moves
upwards with the brush). For finite V , there is a competition between this upwards motion
and the fluid flowing out of the brush according to the last two terms in (3.16a). The first
of these two terms describes the vertical flow and involves the ratio between the height
of the fluid on which gravity forces act and the wet length of the brush along which
there is viscous friction. The last term results from the flow in the radial direction and
is proportional to δ, the vertical to horizontal flow rate ratio identified earlier.

Equation (3.16a) requires an initial condition and two boundary conditions to be solved
in the domain 0 � (r̄ , t̄)� 1:

H(r̄ , 0) = 0, ∂r̄ H(r̄ , t̄)|r̄=0 = H(1, t̄) = 0. (3.17)

The initial condition comes from the definition of H , the first boundary conditions stems
from symmetry and the second one from the assumption that the pressure in the bath is
hydrostatic for r � D/2. In the limit of an infinitely wide brush, L0/D → 0, the aspect
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Figure 2. (a) Evolution of the longitudinal and transverse permeabilities rescaled by d2 as a function of the
porosity φ for an equilateral triangular array of pillars where 4F‖ = [1 − 0.91

√
x]4.6[1 − 0.069(ln x + K −

35x)] and 12.4F⊥ = [1 − 1.05
√
x]2.5[1 − 0.21(ln x + K )] with x = 1 − φ and K = 1.498. These expressions

are fits of numerical data (see Appendix C) and extend analytical asymptotic expressions (Drummond &
Tahir 1984; Jackson & James 1986). (b) Spatio-temporal evolution of H(r̄ , t̄), computed with (3.16a), for two
retraction speeds V and fixed values of δ̄ and h̄ J . (c) Evolution of the transition speed V T as a function of h̄ J
for two values of δ̄. The dotted curve corresponds to the fit (3.18). Pressure field p̄= p/ρgL0 (d) and velocity
field normalised by V at t̄ = 0.33 (e) and at t̄ = 0.66 ( f ) for V = 0.25, δ̄ = 0.5 and h̄ J = 0.25 corresponding to
the top panel of (b). The colour map in (e,f ) corresponds to the norm of the velocity v̄ = |v|/V .

ratio δ vanishes and the flow is everywhere unidirectional along the z axis so that (3.16a)
becomes an ordinary differential equation (ODE) describing the motion of a flat horizontal
interface (see Appendix D.5.1). Due to the perturbative scheme used to derive (3.16a),
it is expected to hold only when δ 
 1. We show below that a good agreement with
experiments is actually obtained up to δ of order 1.

3.2. Solutions of the equation for the interface
Except for some approximate analytical solutions at small and large retraction speed
derived in Appendix D.5, (3.16a) must be solved numerically. We used the NDSolve
command of Mathematica 14.1 for this purpose. Figure 2(b) shows the spatio-temporal
evolution of the air–liquid interface, H(r̄ , t̄), obtained from (3.16a) for some typical values
of δ̄ and h̄ J , when a brush is removed from a liquid bath at two different retraction speeds.
At low retraction speed, the height of the interface measured along the central axis of
the brush, H0(t̄) ≡ H(0, t̄), reaches a maximum value, Hm

0 , before the end of retraction
(t̄ < 1). In this case, we thus have Hm

0 > H0(1). In contrast, at large retraction speed, H0(t̄)
grows monotonically during the retraction and thus reaches its maximum value at the end
of the retraction (t̄ = 1). In this case, we have Hm

0 = H0(1). The transition between these
two types of behaviours occurs at a speed V T such that Ḣ0(1) = 0, where the overdot
denotes a time derivative. Evaluating (3.16a) at t̄ = 1 where L̄ = 0 and imposing Ḣ0(1) = 0
shows that this transition occurs when H0(1) = V T h̄ J/(1 − V T ). Since H0(1)� 1 (i.e. the
interface cannot move faster than the brush), we obtain the upper limit V T � 1/(1 + h̄ J ).
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The actual value of V T can be computed numerically from (3.16a). Figure 2(c) shows the
evolution of V T as a function of h̄ J for some values of δ̄. It is seen that V T is insensitive
to the value of δ̄ when it is smaller than about 2. In this case, V T can be fitted by

V T ≈ 1

1 + 2.6 h̄6/5
J

, for 10−2 � h̄ J � 102 and δ̄ � 2. (3.18)

Once H is obtained numerically, the pressure and velocity fields can be computed from
their analytical expressions (3.6), (3.9) and (3.10a). Figure 2(d) shows the pressure fields
at t̄ = 0.33 for the evolution of H shown in the top panel of figure 2(b). Figures 2(e)
and 2( f ) show the corresponding velocity field at t̄ = 0.33 and t̄ = 0.66, respectively. The
pressure gradient is essentially constant along z and vanishing along r almost everywhere
within the brush except near the rim (r̄ = 1) where it is steeper in both directions leading
to a larger magnitude of the velocity. The velocity field is thus mainly unidirectional near
the central axis and bidirectional near the rim where the liquid escapes radially from the
brush. At t̄ = 0.33, the interface is moving upward since Hm

0 is reached at t̄ = 0.56 in this
example. The velocity is hence oriented upward except near the rim where the liquid is
moving also radially near the bath level. In contrast, at t̄ = 0.66, the interface is moving
downward and the velocity is hence oriented towards the bath except near the rim where
the liquid is moving upward and also radially near the bath level, which results in a region
where the sign of vz changes (near r̄ 
 0.7).

An important test of the model is the rationalisation of the complex evolution of Hm
0

shown in figure 1( f ), where the largest values of Hm
0 are not necessarily reached for the

largest retraction speeds or immersion depths according to the porosity of the brushes.
This complexity is related to the existence of three dimensionless groups of parameters
governing the dynamics: V , h̄ J and δ̄. To get an insight into the variation of Hm

0 , we show
in figure 3(a) its variation as a function of the retraction speed for several values of δ̄ and
h̄ J computed from (3.16a). When V � V T , i.e. when Hm

0 is reached at t̄ < 1, Hm
0 evolves

linearly with V and is written as Hm
0 =C(h̄ J , δ̄)V . The evolution of C(h̄ J , δ̄) with h̄ J

is given in figure 3(b) for several values of δ̄. As explained, the overall variation of Hm
0

involves the three dimensionless control parameters and reads as

Hm
0 
 [h̄ J + α(δ̄)] V , α2(x) ≈ tanh[1/(2x)2], V � V T , (3.19)

where α, computed numerically, and its approximate expression given above are shown in
figure 3(c).

A similar result can be obtained for the height of the interface at the end of the retraction,
H0(1). Figure 3(d) shows the evolution of H0(1) as a function of the retraction speed for
several values of δ̄ and h̄ J . When V � V T , H0(1) evolves linearly with V and is written as
Hm

0 = S(h̄ J )V . The evolution of S(h̄ J ) with h̄ J is given in figure 3(e) for several values
of δ̄. The overall variation of H0(1) reads as

H0(1) 
 h̄ J V , V � V T . (3.20)

In contrast to Hm
0 , H0(1) is essentially insensitive to the value of δ̄. This is due to the

presence of L̄3 = (1 − t̄)3 in the term proportional to δ̄ in (3.16a) which vanishes quickly
as t̄ → 1. Figure 3( f ) shows the effect of a variation of δ̄ by one order of magnitude on the
temporal evolution of H0(t̄). It is seen that Hm

0 changes significantly, but H0(1) remains
essentially unchanged.
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Figure 3. (a) Theoretical evolution of the largest value of H0 in the time interval 0 � t̄ � 1, Hm
0 , as a function

of V for several values of δ̄ and h̄ J . The dots on the curves indicate the value V T of the retraction speed
beyond which Hm

0 is reached at t̄ = 1. At low V , Hm
0 varies linearly with V , Hm

0 =C(h̄ J , δ̄)V . (b) Evolution
of C(h̄ J , δ̄) as a function of h̄ J for several values of δ̄. The numerical data are fitted by C = h̄ J + α(δ̄).
(c) Evolution of α as a function of δ̄ together with the fit α2(x) ≈ tanh[1/(2x)2]. (d) Evolution of the height
of the interface at the end of the retraction, H0(1), as a function of V for several values of h̄ J and δ̄. The
circular dots on the curves indicate the value V T . At low V , H0(1) varies linearly with V , H0(1) = S(h̄ J )V .
(e) Evolution of S(h̄ J ) as a function of h̄ J for several values of δ̄. The numerical data are fitted by S = h̄ J . ( f )
Temporal evolution of H0(t̄) for V = 10−2 and two values of h̄ J and δ̄ as indicated.

4. Comparison with experiments
Figure 4 shows snapshots of three different experiments involving three different brushes
at four different instants, on which the corresponding theoretical profiles h(r, t) of the
air–liquid interface computed with (3.16a) are superimposed. The agreement between
the experimental and theoretical profiles of the air–liquid interface is quite good except,
obviously, near the pillars because their wetting by the liquid is not considered in the model
(see also the last paragraph of § 5). As expected, the agreement slightly deteriorates near
the edges of the brush, where capillary effects become important due to the connection
between the interface and the bath through a meniscus at the rim of the brush. Hence, our
approach satisfyingly captures the global shape of the interface during the motion.

Figure 5(a,b) shows a comparison between some typical temporal evolution of
H0 measured experimentally with various brushes and the corresponding theoretical
evolution obtained by numerically solving (3.16a). A good agreement between theory and
experiments is observed for various retraction speeds, immersion depths and porosities
even when δ is of order 1 and without any fitting parameter.

Figure 5(c) shows a collapse of the experimental data onto the theoretical prediction
when the raw data for hm0 − hJ reported in figure 1( f ) are rescaled by L0 and plotted as a
function of the new dimensionless group identified in (3.19). The grey area in figure 5(c),
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–t = 0.2

–t = 0.4

–t = 0.6

–t = 0.8

(a) (b) (c)

Figure 4. Snapshots of three experiments showing the spatio-temporal evolution of the air–liquid interface
within brushes together with the theoretical profiles h(r, t) (solid yellow curves). Scale bars: 10 mm. Snapshots
correspond to experiments (a) φ1 (L0 = 6 mm) in figure 5(a) and (b) φ2 and (c) φ3 in figure 5(b).

where essentially all the data are located, highlights the region spanned by the theoretical
variation of Hm

0 when the parameters h̄ J and δ̄ vary within their experimental range. The
solid black curve shows the theoretical evolution of Hm

0 when the experimental average
value of h̄ J and δ̄ is used.

Figure 1( f ) shows the raw data in the parameter space (V, hm0 − hJ ) where, as discussed
in § 2, it is not possible to separate them into two groups where one group contains the
data for which hm0 is reached before the end of the retraction and a second group where
hm0 is reached at the end of the retraction. The model developed in § 3 predicts that, when
V > V T (h̄ J ), where V T is given by (3.18), the evolution of H0(t̄) is monotonic and thus
Hm

0 is reached at t̄ = 1. Consequently, the curve V T (h̄ J ) in the parameter space (h̄ J , V )

separates the data into two such groups. Figure 5(d) shows the evolution of V as a function
of h̄ J for the data shown in figure 1( f ). The data below the curve V = V T (h̄ J ) correspond
to a non-monotonic evolution of H0(t̄), with a maximum Hm

0 reached at t̄ < 1, whereas the
data above that curve (with a black edge) correspond to a monotonic evolution of H0(t̄),
with a maximum Hm

0 reached at t̄ = 1. The insets of figure 5(d) show three typical profiles
H0(t̄) for data above, below and on the curve V = V T (h̄ J ).

5. Optimal brush design
Having validated the model through comparison with experimental data, we now focus
our attention on the volume V of liquid captured at the end of retraction (t̄ = 1), which
reads as

V = V
VI = 2φ

[∫ 1

0
H(r̄ , 1) r̄ dr̄ + h̄ J

2

]
, (5.1)

where V = 2πφ
∫ D/2

0 h(r, L0/V ) r dr and VI = πD2L0/4. The quantity φVI is thus
the volume of liquid initially inside the brush below the bath level before retraction
begins. Since H(r̄ , 1) cannot be larger than 1, (5.1) implies that V � Vup = φ(1 + h̄ J ).
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Figure 5. (a,b) Comparison between temporal variations of H0(t̄) measured experimentally (symbols) and
computed from (3.16a) (solid curves) for six brushes and four porosities. The data reported in (a) are those
shown in figure 1(e) where the parameter values are given. The data reported in (b) correspond to: (R, d) =
(500, 2.0) [φ1 = 0.77], (300, 1.5) [φ2 = 0.85], (400, 1.75) [φ3 = 0.81], (650, 1.8) [φ4 = 0.53], where R and d
are given in µm and mm, respectively. Values of V and L0 are given, respectively, in mm min−1 and in mm
and μ = 0.97 Pa s. The corresponding dimensionless parameters vary in the range: 0.06 � V � 0.91, 0.15 � δ̄ �
1.30 (0.22 � δ � 1.84) and 0.095 � h̄ J � 1.27. (c) Evolution of Hm

0 measured experimentally (symbols) as a
function of a rescaled retraction speed identified in (3.19) for the data shown in figure 1( f ) (0.022 � V � 8.53).
The grey area shows the region spanned by the theory when δ̄ and h̄ J are varied within the experimental
range (0.15 � δ̄ � 1.30, 0.05 � h̄ J � 1.27). The black curve is computed using their average value: δ̄ = 0.73
and h̄ J = 0.35. (d) Evolution of V as a function of h̄ J for the data shown in figure 1( f ). The symbols with a
black edge indicate the data for which Hm

0 is reached at the end of the retraction when t̄ = 1. For those data,
V > V T as predicted by the theory, where V T is given by (3.18) and shown as a black curve. Insets: evolution
of H0 as a function of t̄ for some data.

In experiments with a given brush and a given liquid, only the retraction speed V and the
immersion depth L0 can be varied. Figures 1(d) and 1(e) show that the height reached by
the interface at the end of retraction (t̄ = 1), and thus the volume V , grows monotonically
with V and L0, respectively, for a given φ. Thus, there is no optimal retraction speed or
immersion depth for a given brush capturing a given liquid. However, for a given liquid
and given V and L0, there exists an optimal brush maximising V . Indeed, increasing the
porosity φ increases the volume available for the liquid inside the brush but also increases
the permeabilities (figure 2a) which reduces the height reached by the interface. The
interplay between these two antagonistic contributions leads to a non-monotonic variation
of V with φ.

To determine the optimal porosity, we rewrite the parameters in (3.16a) as follows to
make explicit the dependence on φ:

V = Ṽ

F‖(φ)
,

δ̄2

V
= δ2

Ṽ
F⊥(φ), h̄ J = h̃ J

√
1 − φ

φ
, (5.2)
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Figure 6. (a) Evolution of the rescaled volume captured by a brush, V , defined in (5.1), as a function of
the porosity, φ, for δ = 1, h̃ J = 0.5 and various values of Ṽ (see (3.5) and (5.2) for the definition of these
parameters). The dashed curve shows the limiting value Vup = φ + h̃ J (1 − φ)1/2 reached at large retraction
speed when the column of liquid initially inside the brush is entirely pulled out of the bath. (b) Evolution of the
optimal porosity, φopt , corresponding to the maximum of V shown in (a), as a function of Ṽ for several values
of δ and h̃ J together with the fits (5.3). The horizontal dashed lines are analytical estimations, φopt = 1 − h̃2

J /4,
obtained by using Vup for the volume of liquid captured. (c) Measured mass of liquid, mliq , captured at the
end of the retraction process by brushes with various pillar radii R (expressed in µm) for two retraction speeds
(expressed in mm min−1) and d = 1.8 mm, L0 = 10 mm, μ = 0.97 Pa s. The solid curves correspond to the
mass computed with the theory: mliq = ρ V , where V is given in (5.1). Diameters D = 15.8 mm and D = 16.8
mm were used in the theory for V = 10 and V = 100 mm min−1, respectively (see also Appendix D.4). The
dashed curves correspond to the theory where the mass of the liquid deposited along each pillar during the
retraction is considered by adding mLLD = ρVLLD to mliq where VLLD is given by (5.4).

where Ṽ = μV/(ρgd2), h̃ J = 2
√

2π�2
c cos θY /(31/4dL0) and the expressions of F‖ and

F⊥ given in figure 2(a). Here h̃ J is obtained from (2.1) with R expressed as a function of
d and φ. Consequently, H and thus V depend only on φ when Ṽ , δ and h̃ J are fixed. We
consider here that a variation of φ is due to a change of R with d fixed. By expressing d
as a function of R and φ, we could alternatively consider that the variation of φ results
from a change of d with R fixed with similar conclusions with respect to the existence of
an optimal porosity.

Figure 6(a) shows the non-monotonic evolution of the rescaled volume V with φ for
various values of Ṽ with δ = 1 and h̃ J = 1/2. This behaviour can be explained as follows.
For a given value of Ṽ , the first of equations (5.2) together with the expression of F‖
(figure 2a) show that the rescaled retraction speed V is large when φ is small. In this limit,
(3.16a) shows that H(r̄ , 1) 
 1 so that, according to (5.1), V 
 Vup = φ + h̃ J

√
1 − φ. The

amount of liquid captured thus grows linearly with φ when the latter is small enough
(see figure 6a). In contrast, when φ → 1, there is no capillary rise or viscous entrainment
and V vanishes. Therefore, V necessarily features a maximum value at some intermediate
value of φ.

Figure 6(b) shows the variations of the optimal porosity, φopt , as a function of Ṽ for
several values of δ and h̃ J . At large retraction speed, φopt saturates to a constant value
that can be estimated using the simple expression of the upper limit Vup which features
a maximum for φ = 1 − h̃2

J/4. This estimation is shown as horizontal dashed lines in
figure 6(b) and its difference from the numerical results is due to the flatness of V around
its maximum as seen in figure 6(a). For example, for h̃ J = (12/5)1/2, the relative error
on the limiting value of φopt at large Ṽ is about 9 % but the relative error on the volume
captured V is only about 0.025 %. Neglecting the small influence of δ, the evolution of
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φopt is rather well described by the following expression:

φopt ≈ A(h̃ J ) tanh
(
B(h̃ J ) Ṽ

1/4), A= 1 − 0.263 h̃2
J , B = 1.7 + 0.041 e2.5 h̃ J . (5.3)

The optimal porosity therefore varies significantly when Ṽ � 1 and saturates to a constant
value when Ṽ � 1.

The existence of an optimal porosity has been verified experimentally. For this purpose,
various brushes with a fixed number of pillars (Np = 73), a fixed distance between their
centres (d = 1.8 mm) and various pillar radii (400 � R � 750 µm) were immersed at
a given depth (L0 = 10 mm) and removed at two retraction speeds (V = 10 and V =
100 mm min−1) (supplementary movie S4). The mass of liquid mliq transported by these
brushes when they are displaced by a distance L0 has been measured by a traction
device and is reported in figure 6(c). This mass is maximum for R 
 700−750 µm when
V = 10 mm min−1 and R 
 550−600 µm when V = 100 mm min−1. These measurements
are well described by the theory that predicts an optimal value R = 729 and R = 571 µm
for V = 10 and V = 100 mm min−1, respectively.

Note that the model developed here does not take into account the small amount of
liquid deposited on the pillars during the retraction due to the Landau–Levich–Derjaguin
mechanism (Landau & Levich 1942; Derjaguin 1943; Quéré 1999). The thickness, hLLD ,
of the film of liquid deposited on a pillar of radius R and removed at a constant speed
V from a liquid bath is given by hLLD = 1.34R Ca2/3, where Ca = μV/γ 
 1 is the
capillary number. Therefore, the volume of liquid deposited on the brush can be estimated
as VLLD = Np π[(R + hLLD)2 − R2]Lwet , where Np is the number of pillar and Lwet
is the wet length of the pillar above the air–liquid interface within the brush. Such a wet
length exists because the pillars move at the imposed speed V whereas the interface moves
at a smaller speed. Due to this speed difference, Lwet is maximum at t̄ = 1. When a brush
is immersed at a depth L0, the total length along each pillar in contact with the liquid is
hJ + L0 due to the initial capillary rise. Therefore, at the end of the retraction, the wet
length on the pillars above the interface is Lwet = hJ + L0 − h0(1). Consequently, the
volume to be added to the volume computed in (5.1) is given by

VLLD = NpπR
2L0

[
(1 + 1.34Ca2/3)2 − 1

][1 − H0(1)]. (5.4)

Figure 6(c) shows that, in our experiments, the mass of liquid deposited along the pillars
at the end of retraction is small compared with the mass transported by the brush and has
essentially no impact on the optimal porosity. Finally, note that in the experiments reported
in figure 6(c), Ca 
 0.08 when V = 100 mm min−1. For such a value of the capillary
number, the White–Tallmadge (WT) extension, i.e. hWT = hLLD/(1 − 1.34Ca2/3), gives
a better estimation of the thickness of the film deposited up to Ca 
 0.5 (White &
Tallmadge 1966; Bense et al. 2023). However, using hWT instead of hLLD in (5.4)
produces small corrections varying between 0.12 % and 1.18 % when R varies between
400 and 750 µm for V = 100 mm min−1 and smaller than 0.4 % for V = 10 mm min−1.
Those corrections are thus not shown here.

6. Parallel plates removed from a liquid bath
The formalism developed in § 3.1 can be adapted to other geometries. For example, an
equation similar to (3.16a) can be obtained in Cartesian coordinates for two parallel plates
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Figure 7. (a) Snapshots of an experiment showing the spatio-temporal evolution of the air–liquid interface
between two parallel plates (d = 1.58 mm, W = 75 mm, L0 = 42.8 mm, V = 1000 mm min−1) together with
the theoretical profiles h(r, t) (solid yellow curves). The red dashed line indicates the position of the interface
at t = 0 (i.e. h = hJ ). (b,c) Comparison between some temporal variations of H0(t̄) measured experimentally
(symbols) and computed from (6.1a) (solid curves) for two parallel plates: L0 = 40 mm (disk), L0 = 10 mm
(diamond), L0 = 42 mm (square), L0 = 42.8 mm (cross), 0.8 � δ � 1.14 and μ = 0.097 Pa s. Values of d and
W are given in mm and V in mm min−1. (d) Evolution of hm0 − hJ as a function of retraction speed for various
d and W , where 20 � V � 2000 mm min−1, 5 � L0 � 65 mm and μ = 0.097 Pa s except for the symbols with
a red edge where μ = 0.97 Pa s.

separated by a distance 2d along the x axis (see Appendix B for a schematic):

∂H

∂ t̄
= 1 − H

V (H + h̄ J + L̄)
+ δ2

3V

L̄3(h̄ J + L̄)

(H + h̄ J + L̄)3

∂2H

∂ ȳ2 , (6.1a)

δ = 2L0

W
, h̄ J = hJ

L0
= �2

c

dL0
cos θY , (6.1b)

where H , V and L̄ are defined as for a brush; see (3.16b). The derivation of (6.1a) is
similar to that performed in § 3.1 and is given in Appendix E for completeness. Equation
(6.1a) is solved with the initial condition H(ȳ, 0) = 0 and the boundary conditions
∂ȳ H(ȳ, t̄)|ȳ=0 = H(1, t̄) = 0.

6.1. Experiments and comparison with theory
Figure 7(a) shows a typical spatio-temporal evolution of the air–liquid interface between
two parallel plates removed at a constant speed from a liquid bath (see supplementary
movie S5). The corresponding theoretical profiles h(r, t) computed with (6.1a) are
superimposed.

Figure 7(b,c) shows a comparison between some typical temporal evolution of H0
obtained experimentally and the corresponding theoretical evolution obtained by solving
numerically (6.1a). A good agreement between theory and experiments is observed for
various retraction speeds and immersion depths even when δ is of order 1. The impact
of the retraction speed V and immersion depth L0 on H0 is qualitatively similar to what
is observed for a brush. For a given system, H0 reaches a maximum value, Hm

0 , before
the end of the retraction when V is small enough whereas Hm

0 is reached at the end of
the retraction at large speed. The transition speed V T can be computed from (6.1a) and
is essentially identical to that obtained for brushes (see (3.18)) provided the aspect ratio is
not too large, i.e. δ � 1.5.
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Figure 8. (a) Evolution of the largest value of H0 in the time interval 0 � t̄ � 1, Hm
0 , as a function of V for

several values of δ and h̄ J and computed from (6.1a). The circular dots on the curves indicate the value V T .
At low V , Hm

0 varies linearly with V , Hm
0 =C(h̄ J , δ)V . (b) Evolution of C(h̄ J , δ) as a function of h̄ J for

several values of δ. The numerical data are fitted by C = h̄ J + β(δ). (c) Evolution of β as a function of δ

together with the fit β(x) ≈ α(3x/4), where α is given in (3.19). (d) Evolution of Hm
0 measured experimentally

(symbols) as a function of a rescaled retraction speed for the data shown in figure 7(d). The dimensionless
control parameters vary in the range: 0.024 � V � 0.96, 0.13 � δ � 2.0, 0.023 � h̄ J � 0.92. The black curve
is computed using the average value of δ and h̄ J : δ = 1.0 and h̄ J = 0.15. (e) Evolution of the rescaled volume
captured by two parallel plates, V , defined in (6.4), as a function of their rescaled distance d̄ for δ = 1 and
several values of h


J . Both d̄ and h

J are defined in (6.3). ( f ) Evolution of the optimal distance, d̄opt , between

two plates corresponding to the maximum of V shown in (e) as a function h

J for several values of δ. Inset:

evolution of d̄ 0
opt = d̄opt (h


J → 0) as a function of δ together with the fit (6.5a).

As for the case of brushes, the dynamics is governed by three dimensionless groups of
parameters, V , h̄ J and δ, and is thus fairly complex, as shown by the intricate experimental
data gathered in figure 7(d). To rationalise those data, we follow the same procedure as
above and analyse the behaviour of Hm

0 using (6.1a). Figure 8(a) shows the evolution of
Hm

0 as a function of the retraction speed for several values of δ and h̄ J . When V � V T , i.e.
when this maximal value is reached at t̄ < 1, Hm

0 evolves linearly with V . The evolution
of the slope with h̄ J is given in figure 8(b) for several values of δ. Hence, we find that Hm

0
is described by an equation similar to that obtained for brushes:

Hm
0 
 [h̄ J + β(δ)] V , V � V T , (6.2)

where β ≈ α(3x/4) is shown in figure 8(c) and α given in (3.19).
In this case too, our approach satisfyingly captures the experimental observations.

Figure 8(d) shows a collapse of the experimental data reported in figure 7(d) onto the the-
oretical prediction when hm0 − hJ are rescaled by L0 and plotted as a function of the new
dimensionless group identified in (6.2). The grey area in figure 8(d) highlights the region
spanned by the theoretical variation of Hm

0 when the parameters h̄ J and δ are varied within
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their experimental range. The solid black curve shows the theoretical evolution of Hm
0

when the experimental average value of h̄ J and δ is used.

6.2. Optimal plate distance for fluid capture by viscous entrainment
From the analysis performed for brushes in § 5, one could think that there is no optimal
geometry when two parallel plates are removed from a bath because the porosity is equal
to 1. However, increasing the distance 2d between the plates increases the volume available
for the liquid but also increases the permeabilities, k‖ = k⊥ = d2/3, which reduces the
height reached by the interface. Here again, the interplay between these two antagonistic
contributions leads to a non-monotonic variation of the volume of liquid captured by
viscous entrainment when d is varied. To gain quantitative insight into this mechanism,
we rewrite the two d-dependent parameters of (6.1a) as follows:

V = (d̃/d)2 = 1/d̄ 2, h̄ J = h

J/d̄, (6.3)

with d̃ 2 = 3μV/(ρg), hJ = �2
c cos θY /d, h̄ J = hJ/L0 and h


J = �2
c cos θY /(d̃ L0). The

volume of liquid, V , captured at the end of retraction, t̄ = 1, is written as

V = V
VI = 1 + d̄

h

J

∫ 1

0
H(ȳ, 1)dȳ, (6.4)

where V = 2d
∫ W/2
−W/2 h(y, L0/V ) dy, ȳ = 2y/W and VI = 2dWhJ = 2W�2

c cos θY is the
volume initially between the two plates above the liquid bath level. Consequently, H and
thus V depend only on d̄ when δ and h


J are fixed.
Figure 8(e) shows the non-monotonic variation of V as a function of d̄ for given values

of δ and h

J . Figure 8( f ) shows the variation of d̄opt , corresponding to the maximum of

V in figure 8(e), as a function of h

J for several value of δ. The rescaled optimal distance

d̄opt does not depend on h

J when it is small and varies weakly with δ (see the inset of

figure 8f ). For large h

J , d̄opt does not depend on δ and varies as (h


J )
1/3, or in dimensional

units (θY = 0)

2dopt =
h

J
1

√
3 d̃

(1 + 0.075 δ3/2)2/3 = 3 (μV/ρg)1/2

(1 + 0.075 δ3/2)2/3 , (6.5a)

2dopt =
h

J�1

1.88 d̃ (h

J )

1/3 = 2.71
(

μV �2
c

ρgL0

)1/3

. (6.5b)

7. Conclusion
In summary, we have studied experimentally and theoretically the liquid captured when a
rigid brush-like structure is withdrawn from a liquid bath. We experimentally observe how
the amount of liquid transported by viscous entrainment depends on the brush porosity, the
retraction speed and the immersion depth. This intricate dependence stems from the two-
dimensional nature of the drainage flow and on its intricate time evolution with the brush
withdrawal. We developed a theoretical analysis in which this three-dimensional flow is
solved as a perturbation of the main gravity-driven vertical flow. This analysis yields a
PDE that describes the spatio-temporal evolution of the air–liquid interface within the
brush, and hence the evolution of the volume of liquid entrained by the brush at any time.
The obtained equation depends on three dimensionless parameters that reveal the physical
ingredients governing the capture of a fluid by viscous entrainment.
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Our model shows excellent agreement with our experimental data. In particular, the
(quasi) master curve obtained for the maximum height reached by the liquid within the
brush during the retraction provides a universal law to predict the maximum amount of
liquid that can be captured by viscous entrainment. The theoretical profiles of the air–
liquid interface within the brush are also in good agreement with experimental ones
except near the pillars and the edges of the brush where wetting and capillary effects,
not considered in the model, become important. Using the insight provided by our model,
we also determined under which conditions the amount of liquid captured at the end of
the retraction is maximum. We showed that, for a given velocity and immersion depth, an
optimal brush porosity exists. We computed it as a function of the system parameters and
verified it experimentally.

The approach we developed here can be extended, in a straightforward manner, to
other fibre arrangements using the appropriate longitudinal and transverse permeability
coefficients. A natural extension of this work would be the study of soft brushes and the
impact of the deformability of the structures on the liquid capture. The role of capillarity
in the pinch-off (Eggers 1993) of the liquid bridge between the brush and the bath as
the structure is fully removed and in the amount of liquid remaining in the brush when
the drainage is completed is also yet to be rationalised. As a whole, this work provides
experimental and theoretical advances to the physics of anisotropic porous media. In
particular, the identification of optimal brushes for fluid capture has the potential to
influence engineering applications in liquid manipulation and transfer.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10300.
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Appendix A. Brush preparation and experimental apparatus
The brushes were printed with a PolyJet 3D printer Eden260 from Stratasys, using
VeroWhite or VeroClear resins. Holders for the brushes were three-dimensional printed
using a FDM printer Ultimaker S5 and then glued to the brush with superglue. A vessel
was filled with silicone oil (V100 or V1000, γ = 0.021 N m−1, ρ = 970 kg m−3) from
Sigma-Aldrich. The brushes with their holder where attached to a gripper on a traction
device (ZwickiLine Z0.5 from ZwickRoell) and dipped into the fluid at a given depth L0.
When the capillary rise had reached its final height hJ and no further flow was present
within the structure, the brush was removed at a constant speed V from the bath. The
removal was recorded from the side with LED backlighting, using a Basler CMOS
camera with a frame rate adjusted to the withdrawal speed. The height h0 of the
interface along the brush central axis was measured as a function of time using standard
image analysis techniques using Python routines and ImageJ. The force acting on the
brush during retraction was also recorded using a 10 N force sensor from ZwickRoell.
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Figure 9. Displacement of the crosshead of the traction machine (ZwickiLine Z0.5 from ZwickRoell) as a
function of time for two programmed retraction speeds: V = 200 mm min−1 (a,b) and V = 1000 mm min−1

(c,d). (a,c) A constant retraction speed V can be maintained over distances much larger than the immersion
depth L0 considered in this work. The maximum relative error on the programmed speed is 0.05 %. (b,d) The
programmed retraction speed is reached within 20–30 ms after the beginning of the retraction.

Figure 9 shows that the programmed retraction speed can be maintained by the traction
device over distances much larger than the immersion depth L0 considered in this work
and that this speed is reached within 20–30 ms after the beginning of the retraction.

The protocol we use to study viscous entrainment imposes two types of limits on the
brushes that can be used. Firstly, the length of the pillars, L p, must be larger than hJ
otherwise the brush is completely filled by the capillary rise and there is no possible
viscous entrainment. Secondly, the pillars should not be deflected by capillary forces so
that the brush is indeed rigid. This implies that L p < �BC , where �BC = (ER3/8γ )1/2

is the bendocapillary length corresponding to the typical length above which capillary
forces may bend a slender structure (Bico, Reyssat & Roman 2018). These two conditions
are fulfilled only if hJ < �BC that gives a constraint for the radius of the pillar:

R > 2 �
4/5
c

( γ

E

)1/5
(

1 − φ

φ

)2/5

. (A1)

This constraint is more stringent as φ is small. In our experiments, φ = 0.53 is the smallest
porosity we considered and (A1) gives then R > 66 µm (E = 2 GPa) which is much
smaller than the smallest radius we used, i.e. R = 300 µm.

Appendix B. Jurin’s height
When a solid with small interstices compared with the capillary length is put into contact
with a liquid bath, the liquid rises inside the pores up to the so-called Jurin height
minimising the surface energy, US , and the work of the weight of the liquid rising in
the pores, UG :

U =US +UG = γ Ap + γLS ALS + γSV ASV + ρg
∫
V

z dV, (B1)

where γ , γLS and γSV are, respectively, the air–liquid, liquid–solid and solid–air surface
energies, Ap, ALS and ASV are, respectively, the area of the air–liquid, liquid–solid and
solid–air interfaces, ρ is the liquid density and V the volume of the liquid rising in the
pores. Since the solid is in contact either with the liquid or with air, we have ALS + ASV =
AT , where AT is the total area of the solid. In addition, considering a solid whose geometry
is invariant along the vertical z direction, we have ALS = z �LS , where �LS is the length of
the liquid–solid contact line in a given horizontal plane, and V = z Ap where 0 � z � hJ .
Finally, the Young–Laplace–Dupret law gives a relationship between the surface energies:
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Figure 10. Schematics of the systems. (a) Two parallel plates of width W and separated by a distance 2d
partially immersed in a liquid bath. The liquid rises up to z = hJ between the plates. (b) Unit cell of an
equilateral triangular array of cylinders of radius R and separated by a distance d. The liquid rises up to z = hJ
between the cylinders. (c) Horizontal cross-sections of the systems shown in (a,b) highlighting the pore area Ap
(blue area) and the length of the solid–liquid interface �LS (red curves). (d) Experimental measurements of the
Jurin height in an equilateral triangular array of cylinders with various porosities together with the theoretical
prediction (B5).

γSV − γLS = γ cos θY , where θY is the Young contact angle. Using these relations, (B1)
evaluated at z = hJ becomes

U (hJ ) = γ Ap − γ cos θY �LSh J + γSV AT + ρg

2
Aph

2
J . (B2)

The minimum of the energy is obtained from dU/dhJ = 0 and yields the Jurin height:

hJ = γ

ρg

�LS

Ap
cos θY = �2

c
�LS

Ap
cos θY , (B3)

where we have introduced the capillary length �c. For a capillary tube of circular cross-
section of radius R, we have �LS = 2πR and Ap = πR2, so that hJ = 2�2

c R
−1 cos θY as it

should (de Gennes, Brochard-Wyart & Quéré 2004).
For two parallel plates of width W and separated by a distance 2d (see figure 10a,c), we

have �LS = 2W and Ap = 2dW so that

hJ = �2
c

d
cos θY . (B4)

For an equilateral triangular array of cylinders of radius R and separated by a distance d
(see figure 10b,c), we have �LS = NπR and Ap = N [√3d2 − 2πR2]/4, where N is the
number of unit cells in the solid. Equation (B3) becomes

hJ = 2�2
c

R

[
1 − φ

φ

]
cos θY , φ = 1 − 2π√

3

R2

d2 , (B5)

where 1 − π/(2
√

3)� φ � 1 is the porosity of the solid (Princen 1969). This theoretical
expression compares well with experimental data reported in figure 10(d). For a square
array of cylinders of radius R and separated by a distance d, we have �LS = 2NπR and
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Ap = N [d2 − πR2], so that (B3) becomes

hJ = 2�2
c

R

[
1 − φ

φ

]
cos θY , φ = 1 − πR2

d2 , (B6)

where 1 − π/4 � φ � 1 is the porosity of the solid (Princen 1969).

Appendix C. Permeability of an equilateral triangular array of pillars
When the porosity is sufficiently close to 1, the asymptotic expressions for the
permeabilities of an equilateral triangular array of pillars are given by

k‖
R2 = 1

4(1 − φ)

[
− ln(1 − φ) − K + 2(1 − φ) − (1 − φ)2

2

]
,

k⊥
k‖


 1/2, (C1)

where K = 1.498 (Drummond & Tahir 1984; Jackson & James 1986). Note that this is the
same expression as for a square array of cylinders with K = 1.476 (Drummond & Tahir
1984; Jackson & James 1986). Expansions at low porosity exist also for k‖ but not for k⊥
(Drummond & Tahir 1984). For this reason, we used numerical simulations performed
with the COMSOL Multiphysics® software to compute k‖ and k⊥ for all ranges of φ and
fitted the numerical data as explained below.

To compute the longitudinal permeability k‖, an equilateral triangular domain is used in
an (x, y) plane where the length of each side is equal to d and where cylinders of radius
R are centred at each vertex (see figure 11a). This domain extends along the z axis over
a length L z . Non-slip and symmetric boundary conditions are imposed on the cylinder
walls and at the interstices, respectively. A difference of pressure �p is applied at the two
extremities of the system along the z axis and the resulting flow rate Q is computed. The
longitudinal permeability is then given by

k‖ = μL zQ

Sxy�p
, Sxy =

√
3 d2

4
. (C2)

Figure 11(b) shows that the asymptotic expression (C1) agrees well with the numerical
data up to φ 
 0.4. This figure shows also that a good description of the numerical data
over the entire range of φ is obtained with the following fit:

k‖
d2 ≈ 1

4

[
1 −

√
3 R
d

]4.6 [
1 −

√
3

8π
(ln(1 − φ) + K − 35(1 − φ))

]
, (C3)

where the first factor has been added to obtain k‖ = 0 when R/d = 1/
√

3 
 0.577 since,
in this case, there is no interstice between the cylinders and there is no flow. Note that this
configuration is only possible with overlapping cylinders. With non-overlapping cylinders,
the maximal value of R/d is 1/2 so that the minimal value of φ is 1 − π/(2

√
3) 


0.093. Note also that d2 is chosen as the length scale for k‖ in (C3) instead of R as
in (C1).

To compute the transverse permeability k⊥, a two-dimensional domain of size Lx = 4d
and Ly = √

3d with periodic boundary conditions along x and y is used and non-slip
boundary conditions on the cylinder walls. A difference of pressure �p is applied at two
extremities along the x or the y axis (see figure 11c,d) and the resulting flow rate Q per
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Figure 11. Permeabilities of an equilateral triangular of cylinders. (a) Magnitude of the velocity field of a
longitudinal flow along the z axis for three value of R at a given d. (b) Evolution of k‖/d2 as a function of
the porosity φ obtained numerically together with the asymptotic relation (C1) and the fit (C3). (c) Magnitudes
of the velocity and pressure fields for a transverse flow along the x axis for three value of R at a given d.
(d) Same as (c) for a transverse flow along the y axis. Both cases lead to the same value of the permeability.
(e) Evolution of k⊥/d2 as a function of the porosity φ together with the asymptotic relation (C1) and the fit
(C5). ( f ) Evolution of the ratio k⊥/k‖ as a function of φ together with the ratio of the fits (C5) and (C3) and a
simpler fit (C6).

unit length is computed. The permeability is then given by

kx = μLx Q

Ly�p
, ky = μLyQ

Lx�p
. (C4)

The numerical simulations give kx = ky ≡ k⊥ as it should. Figure 11(e) shows that the
asymptotic expression (C1) agrees well with the numerical data up to φ 
 0.4 as for k‖.
This figure shows also that a good description of the numerical data over the entire range
of φ is obtained with the following fit:

k⊥
d2 ≈ 1

12.4

[
1 − 2R

d

]2.5

[1 − 0.21(ln(1 − φ) + K )] , (C5)

where the first factor has been added to obtain k⊥ = 0 when R/d = 1/2 because, in this
case, there is no interstice between the cylinders for a transverse flow as the pillars are in
self-contact. Again, d2 is chosen as the length scale for k⊥ in (C5) instead of R as in (C1).

Figure 11( f ) shows the evolution of k⊥/k‖ as a function of φ together with the ratio of
the fits (C5) and (C3). The good agreement between the data and this ratio highlights the
good quality of the fits. Nevertheless, the ratio of these fits yields a rather cumbersome
expression. A good fit of the data can be obtained with a much simpler expression:

k⊥
k‖

≈ 1
2

(1 − a exp[b(1 − φ)])2 , a = 3.4 × 10−4, b= 8.86. (C6)
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Appendix D. Additional information about the model

D.1. Derivation of our model and link with previous studies
In this section we discuss the similarities between our model and the interface equations
obtained in previous studies about gravity-driven flows in the viscous thin-film regime
(e.g. Huppert 1982; Huppert & Woods 1995; Pritchard, Woods & Hogg 2001; Zheng et al.
2013; Yu, Zheng & Stone 2017). In particular, we show that (3.15) could be obtained
following the method employed in these previous studies, provided that the asymptotic
analysis in δ 
 1 is performed in a consistent manner.

As introduced in Huppert (1982), we start with the local continuity equation ∇ · v = 0
integrated from z = −L to z = h along the vertical direction which, combined with the
kinematic condition (3.3), provides an equation that relates the spatio-temporal evolution
of the interface to the speed of the flow:

∂ h̄(r̄ , t̄)

∂ t̄
= v̄z(r̄ , −L̄) − δ r̄−1∂r̄

[
r̄

∫ h̄

−L̄
v̄r (r̄ , z̄)dz̄

]
, (D1)

where the rescaled speeds read v̄i = vi/V . Using the expressions (3.10a) of the velocity
field vi , we obtain a dimensionless equation that relates h to the pressure field:

∂ h̄(r̄ , t̄)

∂ t̄
= 1 − 1

V

(
∂ p̄

∂ z̄

∣∣∣∣
z̄=−L̄

+ 1
)

+ δ2 k⊥
k‖V

r̄−1∂r̄

[
r̄

∫ 0

−L̄
∂ p̄

∂ r̄
dz̄

]
. (D2)

In order to relate the pressure to the shape of the interface and obtain a closed equation
for h, one needs to derive the expression of the pressure field. When v̄z(r̄ , −L̄) = 0, as in
Huppert (1982) and some other studies mentioned above, the equation for h is obtained,
at the dominant order, by taking p̄(r̄ , z̄) as the hydrostatic pressure. In our case, where
v̄z(r̄ , −L̄) �= 0, this corresponds to using p0, given in dimensionless form by (3.9a). This
implies that terms of order δ2 are neglected in the pressure fields, namely p1 given by
(3.9b). Therefore, if p0 is used as the pressure field, the last term proportional to δ2 in
(D2) must be omitted and this equation reduces to the ODE (D6). Consequently, to obtain,
in a consistent way, a PDE describing the spatio-temporal evolution of the interface h, we
need to keep all the terms of order δ2, i.e. those in (D2) and those in the pressure field.
Using the expansion (3.6) for the pressure, (D2) thus becomes

∂ h̄(r̄ , t̄)

∂ t̄
= 1 − 1

V

(
∂ p̄0

∂ z̄

∣∣∣∣
z̄=−L̄

+ 1
)

+ δ2

V

{
k⊥
k‖

r̄−1∂r̄

[
r̄

∫ 0

−L̄
∂ p̄0

∂ r̄
dz̄

]
− ∂ p̄1

∂ z̄

∣∣∣∣
z̄=−L̄

}
.

(D3)
Substituting the expressions (3.9) of p̄0 and p̄1 in (D3) yields (3.15).

D.2. Influence of the advective term in the equation for the interface
We study here the influence on the interface profile of the last term of (3.15) which has
been neglected to obtain (3.16a). Figure 12(a,b) shows the relative error introduced by
using (3.16a) instead of (3.15) to compute Hm

0 for 0.05 � V � 2 and 0.05 � δ̄ � 2 and two
values of h̄ J . Clearly, the influence of the neglected advective term on the values of Hm

0 is
very small. Figure 12(c) shows the small deviations between H(r̄ , t̄) computed with both
(3.15) and (3.16a) for some representative values of the parameters shown by two crosses
in figure 12(a).
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Figure 12. Relative error on Hm
0 when H(r̄ , t̄) is computed with (3.16a) instead of (3.15) as a function of

V and δ̄ for h̄ J = 0.25 (a) and h̄ J = 0.5 (b). The two crosses correspond to illustrative cases shown in (c).
(c) Spatio-temporal evolution of H(r̄ , t̄) computed with (3.16a) (solid curves) and with (3.15) (dashed curves)
for δ̄ = 1.0 (top panel) and δ̄ = 1.8 (bottom panel) with V̄ = 0.4, h̄ J = 0.25 for both panels. (d) Evolution of
(hm0 − hJ )/hJ and (h0(1) − hJ )/hJ as a function of L0/hJ for δ̃ ≡ δ̄h̄ J = 0.1. The dashed curve indicates the
short-time behaviour whereas the horizontal dashed-dotted and dotted curves are estimations of the saturation
values obtained from (3.19) and (3.20), respectively. (e) Same as (d) for δ̃ = 1. ( f ) Measured mass of liquid,
mliq , captured at the end of the retraction process by brushes with various pillar radii R for two retraction
speeds (expressed in mm min−1) and d = 1.8 mm, L0 = 10 mm, μ = 0.97 Pa s. The solid curves correspond
to the mass computed with the theory. Diameters D = 15.8 mm and D = 16.8 mm were used in the theory
for V = 10 and V = 100 mm min−1, respectively. The dashed curve corresponds to the theoretical curve at
V = 100 mm min−1 when D = 15.8 mm is used. See text for discussion.

D.3. Influence of the immersion depth
The influence of the retraction speed on Hm

0 and H0(1) has been well characterised. At
small retraction speed, their expressions are given by (3.19) and (3.20). At large speed,
they both tend to 1. We discuss briefly here the influence of the immersion depth on these
two quantities.

Figure 12(d,e) shows the evolution of (hm0 − hJ )/hJ and (h0(1) − hJ )/hJ as a function
of L0/hJ for two values of δ̃ ≡ δ̄h̄ J . We use here hJ to rescaled h0 − hJ instead of L0
because Hm

0 and H0(1) would vary with L0 for fixed values of hm0 and h0(1). We also use
δ̃ instead of δ̄ because the former does not depend on L0. In other words, we use hJ as a
vertical length scale instead of L0 in the change of variables (3.4).

These two figures show that, at small L0/hJ ≡ h̄−1
J , we have hm0 = h0(1). Indeed,

as shown above, hm0 = h0(1) only when V > V T . For a given value of V < 1, this
happens only for h̄ J large enough (see figure 2c and (3.18)) or, equivalently, for L0/hJ
sufficiently small. It is also seen that hm0 = h0(1) 
 hJ + L0 when L0/hJ 
 1. Indeed, as
just discussed, L0/hJ 
 1 is equivalent to V � V T and in this case, the liquid moves at
the same speed as the pillars, i.e. h0 = hJ + V t , and at the end of retraction (t = L0/V ),
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we have h0 = hJ + L0. In other words, for small immersion depth, the time needed to
completely remove a brush from a bath is small and the liquid has no time to flow out of
the brush and just follow the pillars.

Figure 12(d,e) also shows, as expected, that the height of the interface saturates to a
maximum value when L0 is sufficiently large (L0 � hJ ). The saturation value for h0(1)

can be estimated from (3.20) which can be written as (h0(1) − hJ )/hJ = V . Each dotted
line in figure 12(d,e) corresponds thus to V . Similarly, the saturation value for hm0 can
be estimated from (3.19) which can be written as (hm0 − hJ )/hJ = [1 + α(δ̃/h̄ J )/h̄ J ]V .
In the limit L0/hJ � 1, i.e. h̄ J 
 1, at fixed δ̃, the function α can be expanded using its
approximate expression:

α(x) ≈
[
tanh[1/(2x)2]

]1/2 
 1
2x

for x � 1. (D4)

Using this result, we have

hm0 − hJ
h J

=
[

1 + α(δ̃/h̄ J )

h̄ J

]
V 


[
1 + 1

2δ̃

]
V . (D5)

This last expression is shown as horizontal dashed-dotted lines in figure 12(d,e).

D.4. Discussion about the value of D used to compute the mass of liquid captured
The value of the brush diameter D affects significantly the (dimensional) mass of liquid
computed from (5.1) since V is proportional to D2 whereas the impact of D on H
computed from (3.16a) is much less pronounced, especially at the end of retraction. Indeed,
D appears only in the expression of δ̄ in (3.16a) which has a negligible influence on profile
of H at the end of the retraction as seen in figure 3(d,f ) where δ̄ varies by one order of
magnitude. Therefore, D2 acts as a scaling factor in the expression ofmliq = ρV . However,
D is not well defined for our brushes (see figure 1b), but it is expected to grow with
the retraction speed as more liquid is then captured at the rim of the brush. The brush
diameter could be defined as the diameter of the circle passing through the centres of the
pillars at the rim of the brush (as shown in figure 1b and D = 15.8 mm for the brushes
used in figure 6c) or passing through the borders of the pillars at the rim of the brush
(D′ = D + 2R, 16.6 � D′ � 17.4 mm for these brushes). We found a good agreement
with the data in figure 6(c) using D = 15.8 and D = 16.8 mm for V = 10 and V = 100
mm min−1, respectively. The dashed curve in figure 12( f ) shows how the theoretical curve
is affected when D = 15.8 mm is used for V = 100 mm min−1. The value of the optimal
radius predicted by the theory is, of course, unaffected by a change of a multiplicative
constant, i.e. D2, in the expression of mliq .

D.5. Approximate solutions of the PDE (3.16a)

D.5.1. Values of δ̄ below which the solutions with δ̄ = 0 lead to good approximations
The PDE (3.16a) reduces to an ODE when δ̄ = 0 which is simpler to deal with:

dH1D
0

dt̄
= 1 − 1

V

[
H1D

0

1 + H1D
0 + h̄ J − t̄

]
, H1D

0 (0) = 0. (D6)
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Figure 13. (a) Evolution of δ̄0, defined in (D7) and (D8), as a function of V and h̄ J . The crosses correspond
to illustrative cases shown in (b). (b) Temporal evolution of H0 computed with (3.16a) for various values of V
and h̄ J and δ̄ 
 δ̄0. The dashed lines show the temporal evolution of H1D

0 computed with (D6). (c) Evolution
of Δ, defined in (D11), as a function of V and h̄ J for δ̄ = 1. (d) Comparison between the temporal evolution
of H0 computed with (3.16a) and the approximate expression H+

0 , defined in (D10), for various values of
V and h̄ J and δ̄ = 1. In these examples, Δ < 0.27 for V = 1, Δ < 0.73 for V = 0.5 and Δ = 0.53 for V = 0.2.
(e) Evolution of Δ, defined in (D11) with H+

0 replaced by H−
0 , as a function of V and h̄ J for δ̄ = 1. H−

0 is given
by (D13). ( f ) Comparison between the temporal evolution of H0 computed with (3.16a) and the approximate
expression H−

0 for various values of h̄ J , V = 0.01 and δ̄ = 0.1. In these examples, 0.76 �Δ� 0.99.

Here, we analyse under which conditions the temporal evolution of H0(t̄) = H(0, t̄) is
well approximated by H1D

0 (t̄). For this purpose, we define

ε(V , h̄ J , δ̄) = H1D,m
0 − Hm

0
Hm

0
, (D7)

where H1D,m
0 and Hm

0 are the largest values of H1D
0 and H0 in the interval 0 � t̄ � 1,

respectively. Thus, ε is the relative error on the largest value of H0 and is always positive
because H1D,m

0 � Hm
0 . Now, we define δ̄0 such as

ε(V , h̄ J , δ̄0) = 0.01, ⇒ δ̄0 = δ̄0(V , h̄ J ). (D8)

Therefore, for a given system where V , h̄ J and δ̄ are known, if δ̄ � δ̄0(V , h̄ J ), then the
relative error on Hm

0 obtained by using (D6) instead of (3.16a) is smaller than or equal
to 1 %.

Figure 13(a) shows the evolution of δ̄0 as a function of V and h̄ J . The three crosses
indicate three illustrative cases shown in figure 13(b). For example, when V = 0.1 and
h̄ J = 0.2, δ̄0 
 0.45. Therefore, if δ̄ � 0.45, the evolution of H0 is well captured by H1D

0
obtained from the ODE (D6) as seen in figure 13(b).
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D.5.2. Analytical approximate solution for large retraction speed
In this regime, 1/V 
 1 and we expand H as follows:

H(r̄ , t̄) =
∑
i=0

V
−i
H (i)(r̄ , t̄). (D9)

Substituting this expansion into (3.16a) and solving order by order, we get at order V
0
,

H (0) = t̄ as expected since this is the evolution of H (0) for an infinite retraction speed.
Because H (0) does not depend on r̄ , the other H (i>0) are only functions of t̄ . Therefore, in
this approximation scheme, we have H(r̄ , t̄) = H0(t̄). Up to order V

−2
, we find

H0(t̄) 
 H+
0 (t̄) = t − 1

2V (1 + h̄ J )
t2 + 4 + 4h̄ J − 3t

24V
2
(1 + h̄ J )3

t3. (D10)

To estimate the accuracy of this approximate solution, we define

Δ = 100
∫ 1

0

|H0(t̄) − H+
0 (t̄)|

H0(t̄)
dt̄, (D11)

so that H+
0 gives a good approximation of H0 when Δ� 1. Figure 13(c) shows the

evolution of Δ as a function of V and h̄ J for δ̄ = 1. Figure 13(d) shows some comparisons
between H0(t̄) computed with (3.16a) and H+

0 (t̄) defined in (D10). In these examples, H+
0

approximates well H0 because 7 × 10−4 �Δ� 0.73.

D.5.3. Analytical approximate solution for small retraction speed
As shown above, when δ̄ < δ̄0(V , h̄ J ), see (D8), H1D

0 obtained by solving (D6) is a good
approximation of the full solution H0. Here, we further assume that V 
 1 so that H0 
 1.
In this case, linearising (D6) leads to

dH−
0

dt̄
= 1 − 1

V

[
H−

0

1 + h̄ J − t̄

]
, H−

0 (0) = 0, (D12)

which can be solved exactly:

H−
0 (t̄) = V

1 − V
[1 + h̄ J − t̄]

⎡⎣1 −
(

1 + h̄ J − t̄

1 + h̄ J

)(1−V )/V
⎤⎦ . (D13)

Figure 13(e) shows the evolution of Δ, defined in (D11) with H+
0 replaced by H−

0 , as a
function of V and h̄ J for δ̄ = 0.1. Figure 13( f ) shows some comparisons between H0(t̄)
computed with (3.16a) and H−

0 (t̄) defined in (D13). In these examples, H−
0 approximates

well H0 because 0.76 �Δ� 0.99.

Appendix E. Parallel plates: permeability and equation for the interface
For completeness, we give here the derivation of (6.1a). We first compute the permeability
before deriving the PDE.

E.1. Permeability
We consider here the flow between two immobile parallel plates as shown in figure 10(a).
Since the x direction is the confinement direction, the lubrication equations for a
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Newtonian and incompressible fluid read in Cartesian coordinates as

μ
∂2uz

∂x2 = ∂p

∂z
+ ρg, μ

∂2uy
∂x2 = ∂p

∂y
,

∂p

∂x
= 0,

∂ux
∂x

+ ∂uy
∂y

+ ∂uz

∂z
= 0. (E1)

Symmetry at x = 0 and non-slip at the walls (x = d) yields the following boundary
conditions:

ux = ∂uy
∂x

= ∂uz

∂x
= 0 at x = 0, uz = uy = ux = 0 at x = d. (E2)

The third equation of (E1) yields p= p(y, z). The first and second equations of (E1) can
then be easily integrated using the boundary conditions (E2) for uz and uy :

uz(x, y, z) = (x2 − d2)

2μ

(
∂p

∂z
+ ρg

)
, uy(x, y, z) = (x2 − d2)

2μ

∂p

∂y
. (E3)

Mass conservation, together with the boundary condition (E2) for ux at x = 0 leads to

ux = (3d2x − x3)

6μ

(
∂2 p

∂y2 + ∂2 p

∂z2

)
⇒ ∂2 p

∂y2 + ∂2 p

∂z2 = 0, (E4)

where we used the boundary condition (E2) at x = d for ux to obtain the equation for the
pressure. This equation must be solved for x = d but, because p does not depend on x , it
is valid for any x and ux ≡ 0. Because p does not depend on x and ux = 0, it is natural to
consider the x-averaged velocity field. We define

vi (y, z) = 1
2d

∫ d

−d
ui (x, y, z) dx . (E5)

We then obtain an effective two-dimensional problem with the following velocity field:

vy(y, z) = − d2

3μ

∂p

∂y
≡ −k⊥

μ

∂p

∂y
, vz(y, z) = − d2

3μ

(
∂p

∂z
+ ρg

)
≡ −k‖

μ

(
∂p

∂z
+ ρg

)
.

(E6)

The velocity is thus given by Darcy’s law with the permeabilities k⊥/d2 = k‖/d2 = 1/3.

E.2. Pressure, velocity and equation for the interface for two parallel plates
The velocity and pressure fields of the fluid between two parallel plates separated by a
distance 2d along the x axis and removed along the z axis at speed V from a liquid bath is
given by Darcy’s law in Cartesian coordinates:

vy(y, z) = −k⊥(z)

μ

∂p

∂y
, vz(y, z) = V − k‖

μ

(
∂p

∂z
+ ρg

)
,

∂2 p

∂z2 + k⊥(z)

k‖
∂2 p

∂y2 = 0,

(E7)
where the equation for the pressure is obtained from mass conservation and z = 0
corresponds to the position of the air–liquid interface of the bath. As for brushes, we
consider that there is no flow along the transverse (horizontal) direction inside the fluid
transported by the brush located above the level of the liquid bath. Therefore,

k⊥(z) = k⊥θ(−z) = d2

3
θ(−z), k‖ = d2

3
, (E8)
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where θ is the Heaviside function. Using the change of variables

ȳ = 2y/W, (z̄, h̄, L̄, h̄ J , t̄, p̄) = (z, h, L , hJ , V t, p/ρg)/L0, (E9)

where W is the width of the plates along the y axis, the equation for the pressure becomes

∂2 p̄

∂ z̄2 + δ2 k⊥(z̄)

k‖
∂2 p̄

∂ ȳ2 = 0, δ = 2L0

W
, (E10)

where the aspect ratio δ is assumed to be small. Expanding the pressure up to order δ2,
p̄= p̄0 + δ2 p̄1, (E10) becomes at orders δ0 and δ2

∂2 p̄0

∂ z̄2 = 0,
∂2 p̄1

∂ z̄2 = −k⊥(z̄)

k‖
∂2 p̄0

∂ ȳ2 . (E11)

These equations are solved with the boundary conditions

p̄0(ȳ, −L̄) = L̄, p̄0(ȳ, h̄) = −h̄ J , p̄1(ȳ, −L̄) = 0, p̄1(ȳ, h̄) = 0. (E12)

The solutions are

p̄0(ȳ, z̄) = (P(ȳ) − 1) z̄ + L̄P(ȳ), P = h̄(ȳ) − h̄ J
h̄(ȳ) + L̄

, (E13a)

p̄1(ȳ, z̄) = 1
6

[
−z̄2 (

z̄ + 3L̄
)
θ(−z̄) + 2L̄3(h̄(ȳ) − z̄)

h̄(ȳ) + L̄

]
∂2P(ȳ)

∂ ȳ2 . (E13b)

Using (E9), equation (E7) and for the interface become

vy(ȳ, z̄) = −δ
k⊥(z̄)

k‖
V‖

∂ p̄

∂ ȳ
, vz(ȳ, z̄) = V − V‖

(
∂ p̄

∂ z̄
+ 1

)
, V‖ = k‖ρg

μ
, (E14a)

∂ h̄(ȳ, t̄)

∂ t̄
= vz(ȳ, h̄)

V
. (E14b)

Substituting (E14a) into (E14b), we get

∂ h̄

∂ t̄
= 1 − 1

V

(
∂ p̄

∂ z̄
+ 1

)
z̄=h̄

= 1 − 1

V

(
∂ p̄0

∂ z̄
+ δ2 ∂ p̄1

∂ z̄
+ 1

)
z̄=h̄

, V = V

V‖
, (E15)

where we used the expansion p̄= p̄0 + δ2 p̄1. Using (E13), we have

∂ p̄0

∂ z̄

∣∣∣∣
z̄=h̄

=P − 1,
∂ p̄1

∂ z̄

∣∣∣∣
z̄=h̄

= −1
3

L̄3

L̄ + h̄(ȳ)

∂2P(ȳ)

∂ ȳ2 , (E16)

so that (E15) becomes

∂ h̄

∂ t̄
= 1 − P

V
+ δ2

3V

L̄3

L̄ + h̄(ȳ)

∂2P(ȳ)

∂ ȳ2 . (E17)

It is convenient to measure the position of the air–liquid interface with respect to its
static initial position. Therefore, we have

H(ȳ, t̄) = h̄(ȳ, t̄) − h̄ J , P = H

H + h̄ J + L̄
, (E18a)

∂2P(ȳ)

∂ ȳ2 = (h̄ J + L̄)

(H + h̄ J + L̄)2

[
∂2H

∂ ȳ2 − 2
H + h̄ J + L̄

[
∂H

∂ ȳ

]2
]

. (E18b)
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Substituting (E18) in (E17), we finally get

∂H

∂ t̄
= 1 − 1

V

[
H

H + h̄ J + L̄

]
+ δ2

3V

L̄3(h̄ J + L̄)

(H + h̄ J + L̄)3

[
∂2H

∂ ȳ2 − 2(∂ȳ H)2

H + h̄ J + L̄

]
. (E19)

As for brushes, the last term of (E19) is very small and can be neglected to obtain (6.1a).
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